Proceedings

10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

CCGrid 2010

Proceedings

10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

Melbourne, Australia 17–20 May 2010

Editors

Manish Parashar and Rajkumar Buyya

Sponsored/Supported by

IEEE Computer Society
Association for Computing Machinery (ACM)
IEEE Technical Committee on Scalable Computing
Cloud Computing and Distributed Systems (CLOUDS) Laboratory
ARC Research Network on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP)
The University of Melbourne, Australia
Manjrasoft Pty Ltd, Melbourne, Australia
NICTA Victoria Lab, Australia
Amazon Web Services, USA
NSF Center for Autonomic Computing
Rutgers, the State University of New Jersey, USA
Victorian State Government, Australia

Los Alamitos, California
Washington • Tokyo

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P4039 BMS Part Number CFP10276-CDR ISBN 978-0-7695-4039-9

Additional copies may be ordered from:

IEEE Computer Society Customer Service Center 10662 Los Vaqueros Circle P.O. Box 3014 Los Alamitos, CA 90720-1314 Tel: + 1 800 272 6657 Fax: + 1 714 821 4641 http://computer.org/cspress csbooks@computer.org IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
Tel: + 1 732 981 0060
Fax: + 1 732 981 9667
http://shop.ieee.org/store/
customer-service@ieee.org

IEEE Computer Society
Asia/Pacific Office
Watanabe Bldg., 1-4-2
Minami-Aoyama
Minato-ku, Tokyo 107-0062
JAPAN
Tel: +81 3 3408 3118
Fax: +81 3 3408 3553
tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Lisa O'Conner Cover art production by Joe Daigle

IEEE Computer Society
Conference Publishing Services (CPS)

http://www.computer.org/cps

10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

CCGrid 2010 Table of Contents

Message from the General Chair	xviii xx xxii
Message from the Program Chair	
Message from the Workshops Chair	
Organising Committee	
Program Committee Members	
CCGrid 2010 Sponsors	xxvii
KEYNOTES	
Enabling the Next Generation of Scalable Clusters	3
Sky Computing: When Multiple Clouds Become One	4
REGULAR PAPERS	
Session R1A: Algorithms—Cloud Computing and Grids	
Dynamic Load-Balanced Multicast for Data-Intensive Applications on Clouds	5
Profit-Driven Service Request Scheduling in Clouds	15
Availability Prediction Based Replication Strategies for Grid Environments	25
EGSI: TGKA Based Security Architecture for Group Communication in Grid	34

Session R1B: Middleware/Runtime—Resource Management	
Elastic Site: Using Clouds to Elastically Extend Site Resources	43
Paul Marshall, Kate Keahey, and Tim Freeman	
ConnectX-2 InfiniBand Management Queues: First Investigation of the New	
Support for Network Offloaded Collective Operations	53
Richard L. Graham, Steve Poole, Pavel Shamis, Gil Bloch, Noam Bloch,	
Hillel Chapman, Michael Kagan, Ariel Shahar, Ishai Rabinovitz, and Gilad Shainer	
Distributed Diskless Checkpoint for Large Scale Systems	63
Leonardo Arturo Bautista Gomez, Naoya Maruyama, Franck Cappello, and Satoshi Matsuoka	
Enabling Instantaneous Relocation of Virtual Machines with a Lightweight	
VMM Extension	73
Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi Sekiguchi	
Session R2A: Applications—Clouds	
A Map-Reduce System with an Alternate API for Multi-core Environments	84
Wei Jiang, Vignesh T. Ravi, and Gagan Agrawal	
An Analysis of Traces from a Production MapReduce Cluster	94
Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan	
An Effective Architecture for Automated Appliance Management System	
Applying Ontology-Based Cloud Discovery	104
Amir Vahid Dastjerdi, Sayed Gholam Hassan Tabatabaei, and Rajkumar Buyya	
Session R2B: Middleware/Runtime—Program Optimization and Schedul	ing
Region-Based Prefetch Techniques for Software Distributed Shared Memory	
Systems	113
Jie Cai, Peter E. Strazdins, and Alistair P. Rendell	
Granularity-Aware Work-Stealing for Computationally-Uniform Grids	123
Vladimir Janjic and Kevin Hammond	
SAGA BigJob: An Extensible and Interoperable Pilot-Job Abstraction	
for Distributed Applications and Systems	135
André Luckow, Lukasz Lacinski, and Shantenu Jha	
Session R3A: Programming Models and Systems—HPC and Accelerator	rs
Remote Process Execution and Remote File I/O for Heterogeneous Processors	
in Cluster Systems	145
Masaaki Shimizu and Akinori Yonezawa	
An Adaptive Data Prefetcher for High-Performance Processors	155
Yong Chen, Huaiyu Zhu, and Xian-He Sun	
Designing Accelerator-Based Distributed Systems for High Performance	165
M. Mustafa Rafique, Ali R. Butt, and Dimitrios S. Nikolopoulos	

Efficient On-Demand Connection Management Mechanisms with PGAS	
Models on InfiniBand	175
Abhinav Vishnu and Manoj Krishnan	
Session R3B: Performance Modeling and Evaluation—Scheduling and Reso	ource
Methodology for Efficient Execution of SPMD Applications on Multicore	
Environments	185
Ronal Muresano, Dolores Rexachs, and Emilio Luque	
An Evaluation of the Benefits of Fine-Grained Value-Based Scheduling	
on General Purpose Clusters	196
Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove	
The Effects of Untruthful Bids on User Utilities and Stability in Computing	
Markets	205
Sergei Shudler, Lior Amar, Amnon Barak, and Ahuva Mu'alem	
FIRE: A File Reunion Based Data Replication Strategy for Data Grids	215
Abdul Rahman Abdurrab and Tao Xie	
Session R4A: Algorithms—Scheduling and Resource Allocation	
SAQA: A Self-Adaptive QoS-Aware Scheduling Algorithm for Real-Time	
Tasks on Heterogeneous Clusters	224
Xiaomin Zhu, Jianghan Zhu, Manhao Ma, and Dishan Qiu	
Bandwidth Allocation for Iterative Data-Dependent E-science Applications	233
Eun-Sung Jung, Sanjay Ranka, and Sartaj Sahni	
A Bi-criteria Algorithm for Scheduling Parallel Task Graphs on Clusters	243
Frédéric Desprez and Frédéric Suter	
Low-Cost Tuning of Two-Step Algorithms for Scheduling Mixed-Parallel	
Applications onto Homogeneous Clusters	253
Sascha Hunold	
Session R4B: Middleware/Runtime—Service Management and Workflows	
ERGOT: A Semantic-Based System for Service Discovery in Distributed	
Infrastructures	263
Giuseppe Pirrò, Paolo Trunfio, Domenico Talia, Paolo Missier, and Carole Goble	
Towards Autonomic Service Provisioning Systems	273
Michele Mazzucco	
WORKEM: Representing and Emulating Distributed Scientific Workflow	
Execution State	283
Lavanya Ramakrishnan, Dennis Gannon, and Beth Plale	

Experiments with Memory-to-Memory Coupling for End-to-End Fusion	
Simulation Workflows	293
Ciprian Docan, Fan Zhang, Manish Parashar, Julian Cummings, Norbert Podhorszki, and Scott Klasky	
·	
Session R5: Programming Models and Systems—Streams	
Streamflow—Programming Model for Data Streaming in Scientific	
Workflows	302
Chathura Herath and Beth Plale	
Representing Eager Evaluation in a Demand Driven Model of Streams	242
on Cloud Infrastructure	312
Paul N. Martinaitis and Andrew L. Wendelborn	222
An MPI-Stream Hybrid Programming Model for Computational Clusters	323
Emilio P. Mancini, Gregory Marsh, and Dhabaleswar K. Panda	
Session R6: Applications	
High Performance Dimension Reduction and Visualization for Large	
High-Dimensional Data Analysis	331
Jong Youl Choi, Seung-Hee Bae, Xiaohong Qiu, and Geoffrey Fox	
Exploring the Potential of Using Multiple E-science Infrastructures	
with Emerging Open Standards-Based E-health Research Tools	341
M. Riedel, B. Schuller, M. Rambadt, M.S. Memon, A.S. Memon, A. Streit, Th. Lippert,	
S.J. Zasada, S. Manos, P.V. Coveney, Felix Wolf, and Dieter Kranzlmüller	
Efficient Runtime Environment for Coupled Multi-physics Simulations:	
Dynamic Resource Allocation and Load-Balancing	349
Soon-Heum Ko, Nayong Kim, Joohyun Kim, Abhinav Thota, and Shantenu Jha	
On-demand Overlay Networks for Large Scientific Data Transfers	359
Lavanya Ramakrishnan, Chin Guok, Keith Jackson, Ezra Kissel, D. Martin Swany,	
and Deborah Agarwal	
Session R7A: Algorithms and Applications—Energy	
Towards Energy Aware Scheduling for Precedence Constrained Parallel Tasks	
in a Cluster with DVFS	368
Lizhe Wang, Gregor von Laszewski, Jay Dayal, and Fugang Wang	
Runtime Energy Adaptation with Low-Impact Instrumented Code in	
a Power-Scalable Cluster System	378
Hideaki Kimura, Takayuki Imada, and Mitsuhisa Sato	
Linear Combinations of DVFS-Enabled Processor Frequencies to Modify	
the Energy-Aware Scheduling Algorithms	388
Nikzad Babaii Rizvandi, Javid Taheri, Albert Y. Zomaya, and Young Choon Lee	

Session R7B: Performance Modeling and Evaluation—Tracing and Communication

The Failure Trace Archive: Enabling Comparative Analysis of Failures	
in Diverse Distributed Systems	398
Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema	
Scalable Communication Trace Compression	408
Sriram Krishnamoorthy and Khushbu Agarwal	
FaReS: Fair Resource Scheduling for VMM-Bypass InfiniBand Devices	418
Adit Ranadive, Ada Gavrilovska, and Karsten Schwan	
Session R8A: Algorithms—Self-Organizing and Peer-to-Peer Systems	
A Proximity-Based Self-Organizing Framework for Service Composition	
and Discovery	428
Agostino Forestiero, Carlo Mastroianni, Giuseppe Papuzzo, and Giandomenico Spezzano	
Dynamic TTL-Based Search in Unstructured Peer-to-Peer Networks	438
Imen Filali and Fabrice Huet	
Enhanced Paxos Commit for Transactions on DHTs	448
Florian Schintke, Alexander Reinefeld, Seif Haridi, and Thorsten Schütt	
Cache Performance Optimization for Processing XML-Based Application	
Data on Multi-core Processors	455
Rajdeep Bhowmik and Madhusudhan Govindaraju	
Session R8B: Performance Modeling and Evaluation—Workload Modeling and Prediction	
A Realistic Integrated Model of Parallel System Workloads	464
Lex Wolters and Dick Epema	
Discovering Piecewise Linear Models of Grid Workload	474
Tamás Élteto, Cécile Germain-Renaud, Pascal Bondon, and Michèle Sebag	
Identification, Modelling and Prediction of Non-periodic Bursts in Workloads	485
Mario Lassnig, Thomas Fahringer, Vincent Garonne, Angelos Molfetas, and Miguel Branco	
On the Use of Machine Learning to Predict the Time and Resources	
Consumed by Applications	495
Andréa Matsunaga and José A.B. Fortes	

SHORT PAPERS

Session S1: Cloud Computing and Applications

On the Origin of Services—Using RIDDL for Description, Evolution	
and Composition of RESTful Services	505
Juergen Mangler, Peter Paul Beran, and Erich Schikuta	
A Categorisation of Cloud Computing Business Models	509
Victor Chang, David Bacigalupo, Gary Wills, and David De Roure	510
Dynamic Resource Pricing on Federated Clouds	513
Marian Mihailescu and Yong Meng Teo Lucibus managed Evectorian of Scientific Applications on Accressed Clouds	510
Unibus-managed Execution of Scientific Applications on Aggregated Clouds	518
Session S2: Grid and E-science Applications	
File-Access Characteristics of Data-Intensive Workflow Applications	522
Taksehi Shibata, SungJun Choi, and Kenjiro Taura	
Overdimensioning for Consistent Performance in Grids	526
Nezih Yigitbasi and Dick Epema	
Topology Aggregation for E-science Networks	530
Eun-Sung Jung, Sanjay Ranka, and Sartaj Sahni	
Handling Recoverable Temporal Violations in Scientific Workflow Systems:	
A Workflow Rescheduling Based Strategy	534
Xiao Liu, Jinjun Chen, Zhangjun Wu, Zhiwei Ni, Dong Yuan, and Yun Yang	
A Fair Decentralized Scheduler for Bag-of-Tasks Applications on Desktop	
Grids	538
Javier Celaya and Loris Marchal	
A Heuristic Query Optimization Approach for Heterogeneous Environments	542
Peter Paul Beran, Werner Mach, Ralph Vigne, Jürgen Mangler, and Erich Schikuta	
Session S3: Data Management in Grids	
Planning Large Data Transfers in Institutional Grids	547
Fatiha Bouabache, Thomas Herault, Sylvain Peyronnet, and Franck Cappello	
Framework for Efficient Indexing and Searching of Scientific Metadata	553
Chaitali Gupta and Madhusudhan Govindaraju	
High Performance Data Transfer in Grid Environment Using GridFTP	
over InfiniBand	557
Hari Subramoni, Ping Lai, Raj Kettimuthu, and Dhabaleswar K. Panda	
Data Injection at Execution Time in Grid Environments Using Dynamic Data	
Driven Application System for Wildland Fire Spread Prediction	565
Roque Rodríguez, Ana Cortés, and Tomás Margalef	

POSTER PAPERS

Expanding the Cloud: A Component-Based Architecture to Application	
Deployment on the Internet	569
Mark Wallis, Frans Henskens, and Michael Hannaford	
Fine-Grained Profiling for Data-Intensive Workflows	571
Nan Dun, Kenjiro Taura, and Akinori Yonezawa	
Supporting OFED over Non-InfiniBand SANs	573
Devesh Sharma	
The Lightweight Approach to Use Grid Services with Grid Widgets on Grid	
WebOS	575
Yi-Lun Pan, Chang-Hsing Wu, Chia-Yen Liu, Hsi-En Yu, and Weicheng Huang	
Energy Efficient Allocation of Virtual Machines in Cloud Data Centers	577
Anton Beloglazov and Rajkumar Buyya	
SciCloud: Scientific Computing on the Cloud	579
Satish Srirama, Oleg Batrashev, and Eero Vainikko	
Rigel: A Scalable and Lightweight Replica Selection Service for Replicated	
Distributed File System	581
Yuan Lin, Yang Chen, Guodong Wang, and Beixing Deng	
In Search of Visualization Metaphors for PlanetLab	583
Andrew J. Zaliwski	
Design and Implementation of an Efficient Two-Level Scheduler for Cloud	
Computing Environment	585
R. Jeyarani, R. Vasanth Ram, and N. Nagaveni	
Cluster Computing as an Assembly Process: Coordination with S-Net	587
Clemens Grelck, Jukka Julku, Frank Penczek, and Alex Shafarenko	
Dynamic Job-Clustering with Different Computing Priorities	
for Computational Resource Allocation	589
Masnida Hussin, Young Choon Lee, and Albert Y. Zomaya	
Dynamic Auction Mechanism for Cloud Resource Allocation	591
Wei-Yu Lin, Guan-Yu Lin, and Hung-Yu Wei	
Policy-Based Management of QoS in Service Aggregations	593
Mohan Baruwal Chhetri, Bao Quoc Vo, and Ryszard Kowalczyk	
Feedback-Guided Analysis for Resource Requirements in Large Distributed	
System	596
Madhulina Sarkar, Sarbani Roy, and Nandini Mukherjee	
TOPP goes Rapid—The OpenMS Proteomics Pipeline in a Grid-Enabled Web	
Portal	598
Sandra Gesing, Jano van Hemert, Jos Koetsier, Andreas Rertsch, and Oliver Kohlhacher	

Second International Symposium on Cloud Computing (Cloud 2010)	
	(00
TrustStore: Making Amazon S3 Trustworthy with Services Composition	600
Jinhui Yao, Shiping Chen, Surya Nepal, David Levy, and John Zic Polyphony: A Workflow Orchestration Framework for Cloud Computing	606
Khawaja S. Shams, Mark W. Powell, Tom M. Crockett, Jeffrey S. Norris, Ryan Rossi,	006
and Tom Soderstrom	
Virtual Resources Allocation for Workflow-Based Applications Distribution	
on a Cloud Infrastructure	612
Tram Truong Huu and Johan Montagnat	
Applying Software Engineering Principles for Designing Cloud@Home	618
Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco Scarpa	
User Requirements for Cloud Computing Architecture	625
Roger Clarke	
D-Cloud: Design of a Software Testing Environment for Reliable Distributed	
Systems Using Cloud Computing Technology	631
Takayuki Banzai, Hitoshi Koizumi, Ryo Kanbayashi, Takayuki Imada,	
Toshihiro Hanawa, and Mitsuhisa Sato	
Fourth Workshop on Desktop Grids and Volunteer Computing Systems 2010)	(PCGrid
Towards Trust In Desktop Grid Systems	637
Yvonne Bernard, Lukas Klejnowski, Jörg Hähner, and Christian Müller-Schloer	
Decentralized Resource Availability Prediction for a Desktop Grid	643
Karthick Ramachandran, Hanan Lutfiyya, and Mark Perry	
Predicting the Quality of Service of a Peer-to-Peer Desktop Grid	649
Marcus Carvalho, Renato Miceli, Paulo Ditarso Maciel Jr., Francisco Brasileiro, and Raquel Lopes	
Generalized Spot-Checking for Sabotage-Tolerance in Volunteer Computing	
Systems	655
Kan Watanabe and Masaru Fukushi	
UnaGrid: On Demand Opportunistic Desktop Grid	661
Harold Castro, Eduardo Rosales, Mario Villamizar, and Artur Jiménez	
Integration of Heterogeneous and Non-dedicated Environments for R	667
Gonzalo Vera and Remo Suppi	
A High-Level Interpreted MPI Library for Parallel Computing in Volunteer	
Environments	673
Troy P. LeBlanc, Jaspal Subhlok, and Edgar Gabriel	
mPlogP: A Parallel Computation Model for Heterogeneous Multi-core	
Computer	679

Liang Li, Xingjun Zhang, Jinghua Feng, and Xiaoshe Dong

Extending the EGEE Grid with XtremWeb-HEP Desktop Grids	685
Haiwu He, Gilles Fedak, Peter Kacsuk, Zoltan Farkas, Zoltan Balaton,	
Oleg Lodygensky, Etienne Urbah, Gabriel Caillat, Filipe Araujo, and Ad Emmen	
Resiliency in High Performance Computing (Resilience 2010)	
Hard Data on Soft Errors: A Large-Scale Assessment of Real-World Error	
Rates in GPGPU	691
Imran S. Haque and Vijay S. Pande	
Team-Based Message Logging: Preliminary Results	697
Esteban Meneses, Celso L. Mendes, and Laxmikant V. Kalé	
Using Cloud Constructs and Predictive Analysis to Enable Pre-Failure Process	
Migration in HPC Systems	703
James Brandt, Frank Chen, Vincent De Sapio, Ann Gentile, Jackson Mayo,	
Philippe Pébay, Diana Roe, David Thompson, and Matthew Wong	
Selective Recovery from Failures in a Task Parallel Programming Model	709
James Dinan, Arjun Singri, P. Sadayappan, and Sriram Krishnamoorthy	
Fifth International Workshop on Content Delivery Networks (CDN 2010)	
Mobility Support Through Caching in Content-Based Publish/Subscribe	
Networks	715
Vasilis Sourlas, Georgios S. Paschos, Paris Flegkas, and Leandros Tassiulas	
Multi-criteria Content Adaptation Service Selection Broker	721
Mohd Farhan Md Fudzee, Jemal Abawajy, and Mustafa Mat Deris	
User Provided Cloud Computing	727
Cláudio Teixeira, Ricardo Azevedo, Joaquim Sousa Pinto, and Tiago Batista	
Challenges for the Application of Grids in Healthcare (CCGrid-Health 2010)	
Gridifying a Diffusion Tensor Imaging Analysis Pipeline	733
Matthan W.A. Caan, Frans M. Vos, Antoine H.C. van Kampen, Silvia D. Olabarriaga, and Lucas J. van Vliet	
Overview of Medical Data Management Solutions for Research Communities	739
Sorina Camarasu-Pop, Frederic Cervenansky, Yonny Cardenas, Jean-Yves Nief,	
and Hugues Benoit-Cattin	
Development and Support of Platforms for Research into Rare Diseases	745
Richard O. Sinnott, Jipu Jiang, Anthony Stell, and John Watt	
Performance Analysis of Diffusion Tensor Imaging in an Academic	
Production Grid	751
Dagmar Krefting, Ralf Luetzkendorf, Kathrin Peter, and Johannes Bernarding	

CCGrid-Multicore 2010 "Frontiers of GPU, Multi- and Many-core Systems"

Programming Challenges for the Implementation of Numerical Quadrature	
in Atomic Physics on FPGA and GPU Accelerators	757
C.J. Gillan, T. Steinke, J. Bock, S. Borchert, I. Spence, and N.S. Scott	
Asynchronous Communication Schemes for Finite Difference Methods	
on Multiple GPUs	763
Daniel Peter Playne and Kenneth Arthur Hawick	
Solving k-Nearest Neighbor Problem on Multiple Graphics Processors	769
Kimikazu Kato and Tikara Hosino	
Cooperative Multitasking for GPU-Accelerated Grid Systems	774
Fumihiko Ino, Akihiro Ogita, Kentaro Oita, and Kenichi Hagihara	
Multi-FFT Vectorization for the Cell Multicore Processor	780
Jacob Barhen, Travis Humble, Pramita Mitra, and Michael Traweek	
High Resolution Program Flow Visualization of Hardware Accelerated Hybrid	
Multi-core Applications	786
Daniel Hackenberg, Guido Juckeland, and Holger Brunst	
Running the NIM Next-Generation Weather Model on GPUs	792
Mark W. Govett, Jacques Middlecoff, and Tom Henderson	
Accelerating Climate and Weather Simulations Through Hybrid Computing	797
Shujia Zhou, Carlos Cruz, Daniel Duffy, Robert Tucker, and Mark Purcell	
A Memory Centric Kernel Framework for Accelerating Short-Range,	
Interactive Particle Simulation	802
Ian Stewart and Shujia Zhou	
From Sparse Matrix to Optimal GPU CUDA Sparse Matrix Vector Product	
Implementation	808
Ahmed H. El Zein and Alistair P. Rendell	
Performance of Windows Multicore Systems on Threading and MPI	814
Judy Qiu, Scott Beason, Seung-Hee Bae, Saliya Ekanayake, and Geoffrey Fox	
Doctoral Symposium	
Service Oriented Approach to High Performance Scientific Computing	820
Jaison Paul Mulerikkal and Peter Strazdins	
Energy Efficient Resource Management in Virtualized Cloud Data Centers	826
Anton Beloglazov and Rajkumar Buyya	
SLA-Driven Dynamic Resource Management for Multi-tier Web Applications	
in a Cloud	832
Waheed Iqbal, Matthew N. Dailey, and David Carrera	
On Economic and Computational-Efficient Resource Pricing in Large	
Distributed Systems	838
Marian Mihailescu and Yong Meng Teo	

A Capabilities-Aware Programming Model for Asymmetric High-End	
Systems	844
M. Mustafa Rafique	
Author Index	850

Message from the General Chair

I am pleased to welcome you to the 10th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGrid 2010) sponsored by the IEEE Computer Society, IEEE Technical Committee on Scalable Computing (TCSC), and Association for Computing Machinery (ACM).

CCGrid is an important conference for the international community as it provides a forum for all cluster, cloud, and Grid computing researchers, developers and users, and those who are just curious to see the project results and become aware of the progress made in these areas.

The inaugural CCGrid conference was held in Brisbane, Australia in 2001. Since then, the conference has successfully been hosted around the world and has emerged as a truly global event. From 2002 to 2009, CCGrid annual events were held in Germany, Japan, USA, UK, Singapore, Brazil, France and China. Returning back to its originating country, we are honored to host the 10th anniversary of the CCGrid conference in Melbourne, Australia in 2010.

CCGrid has been featuring original and outstanding research work in Cluster, Grid, and Cloud Computing. In fact, many emerging research trends and associated publications are featured "first" in CCGrid and their follow-up papers have appeared in other conferences later. This demonstrates emergence of CCGrid as a "first" class venue for presenting original and ground breaking works. For instance, CCGrid has been featuring Cloud computing actively during the last few years, which emerged as one of the major themes. Hence, from 2010, we explicitly recognized this growing trend in CCGrid by including "Cloud computing" in the conference title.

This 10th anniversary, CCGrid 2010 conference offers outstanding technical program featuring keynote talks, tutorials, workshops, mini-symposiums, posters sessions, industry track, research exhibits and demos, and IEEE SCALE competition.

CCGrid has been extremely fortunate to serve as a venue for presentation of prestigious "IEEE Medal for Excellence in Scalable Computing" award offered annually by the IEEE Technical Committee on Scalable Computing. This year, we are pleased to host the 2010 Medal winner Professor William Gropp from the University of Illinois Urbana-Champaign, USA as the opening keynote speaker. We are also fortunate to host a keynote by Professor José Fortes from the University of Florida, USA.

The continued success and leadership of CCGrid requires dedicated and high standard efforts from numerous international volunteers. As the Chair of CCGrid conference series and General Chair of this year's event, I would like to express my sincere gratitude to the members of the Steering Committee and the Program Committee chaired by Professor Manish Parashar. The Program Committee Chair and his Vice chairs (Professors Geoffrey Fox, David Bader, Carlos Varela, Thomas Fahringer, Dick Epema) have coordinated peer-reviews of all submitted "full" papers and selected top quality research papers for presentation at the conference.

The CCGrid 2010 conference received 219 submissions from 37 countries around the world: USA, China, Australia, Germany, France, Spain, India, Brazil, Japan, United Kingdom, Canada, The Netherlands, Iran, Korea, Italy, Austria, Israel, Serbia, Taiwan, Singapore, Belgium, Egypt, Malaysia, Colombia, Turkey, Sweden, Thailand, Switzerland, UAE, Pakistan, Hong Kong, Russia, New Zealand, Algeria, Greece, Tunisia, and Cyprus. After peer-review of all these "full" papers, the Program Committee accepted 51 papers, resulting in an acceptance rate of ~23%.

I thank Professor Omer Rana for coordinating the organisation of 8 satellite workshops/mini-symposiums on hot topics such as MultiCore Clusters, and Clouds for Business. We appreciate the efforts of the chairs of various workshops and their PC members for attracting and selecting top quality papers for presentation at the conference.

I thank Dr. Pavan Balaji for organising and managing the poster session, Suraj Pandey for the excellent management of the conference website, and publicity coordinators, Dr. Cho-Li Wang and Dr. Masoud Sadjadi, for helping us reach a broader community. I thank tutorials chair Professor Sushil K. Prasad and SCALE Challenge chairs, Dr. Shantenu Jha and Dr. Daniel S. Katz for their efforts in enhancing the conference program with interesting tutorials and demos. I thank Lisa O'Conner for her support in ensuring the publication of the conference proceedings in record time.

As we all know, the local arrangements are a key aspect of any event. I would like to offer my special appreciation to leading volunteers of local organizing committee Mukaddim Pathan, James Broberg, and Suraj Pandey for their dedicated work during the last one year. I would like to thank Kim Stevenson for managing registrations and Dushy Wanigatunga for his friendly services as Catering and Conventions Manager of The Langham Hotel.

Thanks are also due to our sponsors, namely, IEEE, ACM, and TCSC and organization supporters Melbourne University's CLOUDS Lab, ISSNIP, NICTA Victoria Lab, NSF Center for Autonomic Computing at Rutgers University, Victoria Government (Australia), and Amazon. I also like to thank HPCWire, our media sponsor and Manjrasoft for sponsoring awards.

Ultimately, however, the success of the conference will be judged by how well the delegates have participated, learnt, interacted and established contacts with other researchers in different fields. The Committees and the sponsors have provided the funding, the venue, and the environment to allow these objectives to be achieved. It is now up to all of us to ensure that the conference is an outstanding success.

Finally, I wish everyone a successful, stimulating and rewarding meeting and look forward to seeing you again at future conferences.

Enjoy your visit to multicultural Melbourne and beautiful Australia!

Professor Rajkumar Buyya
Director, Cloud Computing and Distributed Systems (CLOUDS) Lab
Melbourne School of Engineering
The University of Melbourne, Australia
http://www.cloudbus.org/

CEO, Manjrasoft Pty Ltd, Melbourne, Australia http://www.manjrasoft.com/

Message from the Program Chair

On behalf of the vice chairs and the program committee, it is my pleasure to welcome you to the 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing being held in Melbourne, Australia, the city where it was founded a decade ago. CCGrid continues to focus on bringing together international researchers, developers, and users and to provide an international forum to present leading research activities and results on a broad range of topics related to Cluster, Cloud and Grid platforms, paradigms and their applications.

By the standards of the field, CCGrid is a well established conference. Nonetheless, as the research landscape has changed, we have evolved the focus and format of the conference to match it. The most obvious change is the explicit recognition of Cloud computing in our title. Cloud computing is emerging as a dominant computing paradigm alongside Cluster and Grid computing, and as a result, it is fitting that the scope of CCGrid be expanded to accommodate research in this area. Additionally, the CCGrid 2010 call had a special focus on three important and immediate issues that are significantly influencing all aspects of Cluster, Cloud and Grid computing: *Economics*, *Environment* and *Autonomics*.

We have, of course, retained – and indeed strengthened – CCGrid's focus on presenting strong papers on exciting science. This year we accepted 51 full papers from an exceptionally strong field of 219 reviewed full paper submissions, resulting in an acceptance rate of ~23%. For this I would like to acknowledge the dedication and tremendous efforts of the vice program chairs: **Geoffrey Fox**, Indiana University, USA (Applications and Experience), **David Bader**, Georgia Tech, USA (Algorithms), **Carlos Varela**, RPI, USA (Programming Models and Systems), **Thomas Fahringer**, University of Innsbruck, Austria (Middleware/Runtime), and **Dick Epema**, Delft University, Netherland (Performance Modeling and Evaluation). I would also like to thank the program committee and reviewers, who gave their time and expertise as we handled the large volume of submissions.

Several events complement and strengthen the main CCGrid technical program. We are delighted to welcome two excellent and internationally renowned keynote speakers – the first keynote will be given by Professor William Gropp, recipient of the IEEE Medal of Excellence in Scalable Computing, and the second keynote will be given by Professor Jose Fortes, a world leader in research in Cloud Computing. CCGrid will also host the 3rd IEEE TCSC International Scalable Computing Challenge (SCALE 2010). This year the challenge will be organized by Shantenu Jha and Daniel Katz, and will feature live demonstrations showcasing real-world problem solving using computing that scales.

The conference will also include a dedicated industry track on Cloud computing, a poster session (coordinated by Pavan Balaji) presenting the latest breakthroughs in Cluster, Grid and Cloud technologies, multiple satellite workshops (coordinated by Omer Rana) addressing important related areas of research, tutorials (coordinated by Sushil Prasad), as well as the 3rd IEEE TCSC Doctoral Symposium (coordinated by Rajiv Ranjan and Hyunjoo Kim).

An event such as CCGrid is not possible without the coordinated efforts of multiple dedicated individuals who volunteer their time and expertise. I would like to acknowledge the leadership and untiring efforts of the conference general chair, Rajkumar Buyya, and the guidance provided by the steering committee. The publicity chairs (Cho-Li Wang and Masoud Sadjadi), local organizing chairs (James Broberg and Mukaddim Pathan), and cyber chair (Suraj Pandey) also deserve special mention.

Most of all, I am grateful to the CCGrid community for providing high-quality papers and presentations, and for showing how dynamic the field is becoming.

I do hope that you will find this program interesting and thought provoking, and that CCGrid 2010 will provide you with a valuable opportunity to share ideas with researchers and practitioners from academia and industry from around the world.

Cheers!

Professor Manish Parashar,

National Science Foundation & Rutgers, The State University of New Jersey, USA

Program Chair, CCGrid 2010

CCGrid 2010 – Message from the Workshops Chair

A number of workshop proposals were received for CCGrid 2010, some were successful workshops hosted along previous CCGrid events, whereas others demonstrated the emergence of particular research areas in Grid, Cluster and Cloud computing over recent years. Workshops continue to play an important role in the overall CCGrid programme, as they help identify hot topics of research, stimulate research in emerging areas of interest to the community, and enable participants to discuss and establish collaborative links. As work being presented within a workshop is often at an early stage of maturity, but indicative of significant potential, such events should also allow participants to engage with the authors and generate discussion. If you are attending CCGrid this year, please try to participate in at least one workshop and present your views. It would be wonderful to see an enthusiastic and active community being represented at the workshops, helping identify research directions and challenges for subsequent years.

To ensure that good quality contributions were included, stringent acceptance criteria were adhered to by all workshop organizers. Six (out of the 8 submitted) workshop proposals were accepted this year. The choice was based on the strength of the proposals, the quality of submissions, the experience of the organizers and importance of these emerging areas to Grid, Cluster and Cloud computing research. The following workshops have been accepted for CCGrid 2010:

• 5th International Workshop on Content Delivery Networks (CDN 2010)

This workshop focuses on "Content Delivery in the Cloud", with an emphasis on research trends and results in terms of design, architecture, and applications for content and service delivery in the Internet and Clouds; optimization for Cloud-based content delivery; and performance measurement methodologies.

• 4th Workshop on Desktop Grids and Volunteer Computing Systems (PCGrid 2010)

Desktop grids and volunteer computing systems utilize the free resources available in Intranet and Internet environments for supporting large-scale computation and storage. The purpose of this workshop is to provide a forum for discussing recent advances and identifying open issues for the development of scalable, fault-tolerant, and secure desktop Grid systems. This year's PCGrid workshop has special emphasis on the interaction of Clouds and desktop Grids. This workshop has been organized in collaboration with the highly successful European CoreGRID Research Group working in this area.

• 2nd International Symposium on Cloud Computing (Cloud 2010)

This workshop has a special theme of "Applied Cloud Technologies for Business and Consumer Applications" and is targeted at researchers and practitioners involved in Cloud computing technologies in addition to those harnessing Clouds for their applications in various fields to maximise performance, minimise cost and improve the scale of their endeavours.

• Resiliency in High Performance Computing (Resilience 2010)

This workshop is based on the premise that High Performance Computing (HPC) carried out over Grid, Cluster and Clouds must utilize large numbers of resources and hence effective HPC in any of these paradigms must address the issue of resiliency at large-scale. The substantial growth in system scale, and the resulting increase in component count, poses a challenge for HPC system and application software with respect to fault tolerance and resilience.

Challenges for the Application of Grids in Healthcare (CCGrid-Health 2010)

With the increasing interest in the use of Grid-based technologies in Healthcare (and the very active "HealthGrid" community), this workshop aims to encourage discussion about the challenges for the construction and deployment of Grids in Healthcare, offering a contact opportunity between HealthGrid application developers and contributing to reduce the gap between the research and production Grid communities. The workshop has the goals of obtaining an overview of ongoing efforts

in health-related Grid applications; obtaining an overview of challenges (technologies, achievements, gaps, roadblocks); and identifying common requirements to encourage collaboration between Health and Computing Sciences.

• CCGrid-Multicore 2010 (Frontiers of GPU, Multi- and Many-Core Systems) There has recently been an increasing use of multi- and many-core microprocessors within Clusters, Clouds and Grids. Both conventional multi- and many-core processors, such as Intel Nehalem and IBM Power7 processors, and unconventional many-core processors, such as NVIDIA Tesla and AMD FireStream GPUs. The aim of this workshop is to discuss issues such as: how to optimize applications for conventional multi- and many-core processors? How does one re-engineer applications to take advantage of the tremendous computing power of a GPU in a reasonable cost-benefit ratio?, and What are effective ways of using GPUs as accelerators?

The workshops also include invited and keynote speakers – from active researchers such as Geoffrey Fox, David Abramson and others. It is also interesting to see a combination of university, industry and national laboratory participation on the programme and organizing committees of the workshops mentioned above.

I would like to thank Rajkumar Buyya and his team (James Broberg, Suraj Pandey and Mukaddim Pathan) with their near zero-latency email responses (!) to my queries, and all the workshop organizers. It has been a pleasure to work with all of you this year.

Enjoy the workshops this year – and be sure to participate actively!

Professor Omer F. Rana, Cardiff University, UK

CCGrid 2010 Workshops Chair

Organising Committee

Chairs and Committees

General Chair

Rajkumar Buyya, University of Melbourne and Manjrasoft Pty Ltd, Australia

Program Committee Chair

Manish Parashar, Rutgers University, USA

Vice Chairs

Applications and Experiences

Geoffrey Fox, Indiana University, USA

Algorithms

David Bader, Georgia Tech, USA

Programming Models and Systems

Carlos Varela, RPI, USA

Middleware/Runtime

Thomas Fahringer, University of Innsbruck, Austria

Performance Modeling and Evaluation

Dick Epema, Delft University, Netherland

Workshop Chair

Omer F. Rana, Welsh eScience Center and Cardiff University, UK

Industry Track Chair

Geng Lin, Cisco Systems, USA

Posters Chair

Pavan Balaji, Argonne National Laboratory, USA

Publicity Chair

Cho-Li Wang, *University of Hong Kong, China* Masoud Sadjadi, *FIU, USA*

Tutorials Chair

Sushil K. Prasad, Georgia State University, USA

Research Demos/Competitions Chair (SCALE Challenge)

Shantenu Jha, LSU, USA/eSI, UK

Daniel S. Katz, University of Chicago/Argonne National Laboratory, USA

Local Organising Co-Chairs

Mukaddim Pathan, *University of Melbourne, Australia* James Broberg, *University of Melbourne, Australia* Suraj Pandey, *University of Melbourne, Australia*

Local Organising Committee Members

Dr. Jinjun Chen, Swinburne University of Technology Suraj Pandey, University of Melbourne, Australia Anton Beloglazov, University of Melbourne, Australia William Voorsluys, University of Melbourne, Australia

Cyber Chair

Suraj Pandey, University of Melbourne, Australia

Chairs of Associated CCGrid 2010 Workshops:

Third IEEE TCSC Doctoral Symposium

Co-Chairs:

Rajiv Ranjan, *University of New South Wales, Sydney, Australia* Hyunjoo Kim, *Rutgers University, USA*

Fifth International Workshop on Content Delivery Networks (CDN 2010) Co-Chairs:

Giancarlo Fortino, *University of Calabria, Italy* George Pallis, *University of Cyprus, Cyprus* Mukaddim Pathan, *University of Melbourne, Australia* Swami Sivasubramanian, *Amazon.com, Inc., USA*

Fourth Workshop on Desktop Grids and Volunteer Computing Systems (PCGrid 2010) Co-Chairs:

Gilles Fedak, *INRIA*, *France* Derrick Kondo, *INRIA*, *France* Bahman Javadi, *INRIA*, *France*

Second International Symposium on Cloud Computing (Cloud 2010) Co-Chairs:

James Broberg, *The University of Melbourne, Australia*Bruno Schulze, *National Laboratory for Scientific Computing, Brazil*Rajkumar Buyya, *The University of Melbourne, Australia*

Workshop on Resiliency in High Performance Computing (Resilience 2010) Co-Chairs:

Stephen L. Scott, *Oak Ridge National Laboratory, USA* Chokchai (Box) Leangsuksun, *Louisiana Tech University, USA* Christian Engelmann, *Oak Ridge National Laboratory, USA*

Workshop on Challenges for the Application of Grids in Healthcare (CCGrid-Health 2010) Co-Chairs:

Christophe Blanchet, *IBCP*, *CNRS*, *FR*Silvia D. Olabarriaga, *University of Amsterdam, The Netherlands*Tony Solomonides, *University of the West of England, Bristol, UK*Tristan Glatard, Creatis, *CNRS*, *FR*

Workshop on Frontiers of GPU, Multi- and Many-Core Systems (CCGrid-Multicore 2010) Co-Chairs:

Shujia Zhou, NASA, USA Judy Qiu, Indiana University, USA Ken Hawick, Massey University, New Zealand

Program Committee Members

Kenneth Hawick, Massey University – Albany, New Zealand

Cécile Germain-Renaud, Université Paris-Sud, France

Carlo Mastroianni, ICAR-CNR, Italy

Bo Hong, Georgia Institute of Technology, USA

Kamesh Madduri, Lawrence Berkeley National Laboratory, USA

Tiffani Williams, Texas A&M University, USA

Jakub Kurzak, University of Tennessee at Knoxville, USA

Albert Zomaya, University of Sydney, Australia

Jon Berry, Sandia National Laboratory, USA

Zhihui Du, Tsinghua University, China

Viktor Prasanna, University of Southern California, USA

Gul Agha, University of Illinois, Urbana-Champaign, USA

Paolo Ciancarini, University of Bologna, Italy

John Field, IBM T.J. Watson Research Lab, USA

Peter van Roy, Catholic University of Louvain, Belgium

David Anderson, University of California, Berkeley, USA

Marty Humphrey, University of Virginia, USA

Henri Bal, Vrije Universiteit, Amsterdam, the Netherlands

Franck Cappello, LRI/INRIA, France

Christophe Cérin, University of Paris XII, France

Seif Haridi, KTH Stockholm, Sweden

Thilo Kielmann, Vrije Universiteit, Amsterdam, the Netherlands

Michela Taufer, University of Delaware, USA

Henri Casanova, University of Hawaii, USA

Kenjiro Taura, University of Tokyo, Japan

Radu Prodan, University of Innsbruck, Austria

Matei Ripeanu, University of British Columbia, Canada

Hong-Linh Truong, Technical University of Vienna, Austria

Achim Streit, Jülich Supercomputing Centre, Germany

Ramin Yahyapour, *University of Dortmund*, *Germany*

Yutaka Isikawa, University of Tokyo, Japan

Ewa Deelman, University of Southern California, USA

Tevfik Kosar, Louisiana State University, USA

Erwin Laure, Royal Institute of Technology (KTH), Sweden

Ian Taylor, Cardiff University, United Kingdom

David Abramson, Monash University, Australia

Frédéric Desprez, LIP/INRIA, France

Thomas Herault, INRIA, France

Alexandru Iosup, Delft University of Technology, the Netherlands

Emmanuel Jeannot, LORIA/INRIA, France

Derrick Kondo, INRIA, Grenoble, France

Tiejian Luo, Graduate University of the Chinese Academy of Sciences, China

Martin Swany, University of Delaware, USA

Douglas Thain, Notre-Dame University, USA

Jon Weissman, University of Minnesota, USA

Lex Wolters, Leiden University, the Netherlands

Daniel S. Katz, Argonne National Laboratory, USA

Omer Rana, Cardiff University, United Kingdom

Scott Klasky, Oak Ridge National Laboratory, USA

Renato Figueiredo, University of Florida, USA

Jose Fortes, University of Florida, USA

Wu-chun Feng, Virginia Tech, USA

Jean-Marc Pierson, Institut de Recherche en Informatique de Toulouse (IRIT), France

Laurent Lefèvre, INRIA, University of Lyon, France

Jordi Torres, Technical University of Catalonia (UPC), Spain

Sathish Vadhiyar, Indian Institute of Science, India

Paul Roe, Queensland University of Technology, Australia

Andrzej M. Goscinski, Deakin University, Australia

Srikumar Venugopal, University of New South Wales, Australia

Ignacio Martín Llorente, Universidad Complutense de Madrid, Spain

Thomas J. Hacker, Purdue University, USA

Hai Jin Huazhong, University of Science and Technology, China

Kelvin Droegemeier, University of Oklahoma, USA

Bruno Schulze, National Laboratory for Scientific Computing - LNCC, Brazil

Helen Karatza, Aristotle University of Thessaloniki, Greece

Adam Barker, University of Melbourne, Australia

Yong Chen, Illinois Institute of Technology, USA

Ching-Hsien(Robert) Hsu, Chung Hua University, Taiwan

Satoshi Matsuoka, Tokyo University of Technology, Japan

Shivasubramanian Swami, Amazon Inc., USA

Gregor von Laszewski, Indiana University, USA

Lizhe Wang Rochester, Institute of Technology, USA

Cho-Li Wang, The University of Hong Kong, Hong Kong

Kuan-Ching Li, Providence University, Taiwan

Anne Liu, University of New South Wales, Australia

CCGrid 2010 Sponsors

